|  | /* | 
|  | * sched_clock.c: Generic sched_clock() support, to extend low level | 
|  | *                hardware time counters to full 64-bit ns values. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  | #include <linux/clocksource.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/ktime.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/moduleparam.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/sched/clock.h> | 
|  | #include <linux/syscore_ops.h> | 
|  | #include <linux/hrtimer.h> | 
|  | #include <linux/sched_clock.h> | 
|  | #include <linux/seqlock.h> | 
|  | #include <linux/bitops.h> | 
|  |  | 
|  | /** | 
|  | * struct clock_read_data - data required to read from sched_clock() | 
|  | * | 
|  | * @epoch_ns:		sched_clock() value at last update | 
|  | * @epoch_cyc:		Clock cycle value at last update. | 
|  | * @sched_clock_mask:   Bitmask for two's complement subtraction of non 64bit | 
|  | *			clocks. | 
|  | * @read_sched_clock:	Current clock source (or dummy source when suspended). | 
|  | * @mult:		Multipler for scaled math conversion. | 
|  | * @shift:		Shift value for scaled math conversion. | 
|  | * | 
|  | * Care must be taken when updating this structure; it is read by | 
|  | * some very hot code paths. It occupies <=40 bytes and, when combined | 
|  | * with the seqcount used to synchronize access, comfortably fits into | 
|  | * a 64 byte cache line. | 
|  | */ | 
|  | struct clock_read_data { | 
|  | u64 epoch_ns; | 
|  | u64 epoch_cyc; | 
|  | u64 sched_clock_mask; | 
|  | u64 (*read_sched_clock)(void); | 
|  | u32 mult; | 
|  | u32 shift; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct clock_data - all data needed for sched_clock() (including | 
|  | *                     registration of a new clock source) | 
|  | * | 
|  | * @seq:		Sequence counter for protecting updates. The lowest | 
|  | *			bit is the index for @read_data. | 
|  | * @read_data:		Data required to read from sched_clock. | 
|  | * @wrap_kt:		Duration for which clock can run before wrapping. | 
|  | * @rate:		Tick rate of the registered clock. | 
|  | * @actual_read_sched_clock: Registered hardware level clock read function. | 
|  | * | 
|  | * The ordering of this structure has been chosen to optimize cache | 
|  | * performance. In particular 'seq' and 'read_data[0]' (combined) should fit | 
|  | * into a single 64-byte cache line. | 
|  | */ | 
|  | struct clock_data { | 
|  | seqcount_t		seq; | 
|  | struct clock_read_data	read_data[2]; | 
|  | ktime_t			wrap_kt; | 
|  | unsigned long		rate; | 
|  |  | 
|  | u64 (*actual_read_sched_clock)(void); | 
|  | }; | 
|  |  | 
|  | static struct hrtimer sched_clock_timer; | 
|  | static int irqtime = -1; | 
|  |  | 
|  | core_param(irqtime, irqtime, int, 0400); | 
|  |  | 
|  | static u64 notrace jiffy_sched_clock_read(void) | 
|  | { | 
|  | /* | 
|  | * We don't need to use get_jiffies_64 on 32-bit arches here | 
|  | * because we register with BITS_PER_LONG | 
|  | */ | 
|  | return (u64)(jiffies - INITIAL_JIFFIES); | 
|  | } | 
|  |  | 
|  | static struct clock_data cd ____cacheline_aligned = { | 
|  | .read_data[0] = { .mult = NSEC_PER_SEC / HZ, | 
|  | .read_sched_clock = jiffy_sched_clock_read, }, | 
|  | .actual_read_sched_clock = jiffy_sched_clock_read, | 
|  | }; | 
|  |  | 
|  | static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift) | 
|  | { | 
|  | return (cyc * mult) >> shift; | 
|  | } | 
|  |  | 
|  | unsigned long long notrace sched_clock(void) | 
|  | { | 
|  | u64 cyc, res; | 
|  | unsigned long seq; | 
|  | struct clock_read_data *rd; | 
|  |  | 
|  | do { | 
|  | seq = raw_read_seqcount(&cd.seq); | 
|  | rd = cd.read_data + (seq & 1); | 
|  |  | 
|  | cyc = (rd->read_sched_clock() - rd->epoch_cyc) & | 
|  | rd->sched_clock_mask; | 
|  | res = rd->epoch_ns + cyc_to_ns(cyc, rd->mult, rd->shift); | 
|  | } while (read_seqcount_retry(&cd.seq, seq)); | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Updating the data required to read the clock. | 
|  | * | 
|  | * sched_clock() will never observe mis-matched data even if called from | 
|  | * an NMI. We do this by maintaining an odd/even copy of the data and | 
|  | * steering sched_clock() to one or the other using a sequence counter. | 
|  | * In order to preserve the data cache profile of sched_clock() as much | 
|  | * as possible the system reverts back to the even copy when the update | 
|  | * completes; the odd copy is used *only* during an update. | 
|  | */ | 
|  | static void update_clock_read_data(struct clock_read_data *rd) | 
|  | { | 
|  | /* update the backup (odd) copy with the new data */ | 
|  | cd.read_data[1] = *rd; | 
|  |  | 
|  | /* steer readers towards the odd copy */ | 
|  | raw_write_seqcount_latch(&cd.seq); | 
|  |  | 
|  | /* now its safe for us to update the normal (even) copy */ | 
|  | cd.read_data[0] = *rd; | 
|  |  | 
|  | /* switch readers back to the even copy */ | 
|  | raw_write_seqcount_latch(&cd.seq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Atomically update the sched_clock() epoch. | 
|  | */ | 
|  | static void update_sched_clock(void) | 
|  | { | 
|  | u64 cyc; | 
|  | u64 ns; | 
|  | struct clock_read_data rd; | 
|  |  | 
|  | rd = cd.read_data[0]; | 
|  |  | 
|  | cyc = cd.actual_read_sched_clock(); | 
|  | ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift); | 
|  |  | 
|  | rd.epoch_ns = ns; | 
|  | rd.epoch_cyc = cyc; | 
|  |  | 
|  | update_clock_read_data(&rd); | 
|  | } | 
|  |  | 
|  | static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt) | 
|  | { | 
|  | update_sched_clock(); | 
|  | hrtimer_forward_now(hrt, cd.wrap_kt); | 
|  |  | 
|  | return HRTIMER_RESTART; | 
|  | } | 
|  |  | 
|  | void __init | 
|  | sched_clock_register(u64 (*read)(void), int bits, unsigned long rate) | 
|  | { | 
|  | u64 res, wrap, new_mask, new_epoch, cyc, ns; | 
|  | u32 new_mult, new_shift; | 
|  | unsigned long r; | 
|  | char r_unit; | 
|  | struct clock_read_data rd; | 
|  |  | 
|  | if (cd.rate > rate) | 
|  | return; | 
|  |  | 
|  | WARN_ON(!irqs_disabled()); | 
|  |  | 
|  | /* Calculate the mult/shift to convert counter ticks to ns. */ | 
|  | clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600); | 
|  |  | 
|  | new_mask = CLOCKSOURCE_MASK(bits); | 
|  | cd.rate = rate; | 
|  |  | 
|  | /* Calculate how many nanosecs until we risk wrapping */ | 
|  | wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL); | 
|  | cd.wrap_kt = ns_to_ktime(wrap); | 
|  |  | 
|  | rd = cd.read_data[0]; | 
|  |  | 
|  | /* Update epoch for new counter and update 'epoch_ns' from old counter*/ | 
|  | new_epoch = read(); | 
|  | cyc = cd.actual_read_sched_clock(); | 
|  | ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift); | 
|  | cd.actual_read_sched_clock = read; | 
|  |  | 
|  | rd.read_sched_clock	= read; | 
|  | rd.sched_clock_mask	= new_mask; | 
|  | rd.mult			= new_mult; | 
|  | rd.shift		= new_shift; | 
|  | rd.epoch_cyc		= new_epoch; | 
|  | rd.epoch_ns		= ns; | 
|  |  | 
|  | update_clock_read_data(&rd); | 
|  |  | 
|  | if (sched_clock_timer.function != NULL) { | 
|  | /* update timeout for clock wrap */ | 
|  | hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL); | 
|  | } | 
|  |  | 
|  | r = rate; | 
|  | if (r >= 4000000) { | 
|  | r /= 1000000; | 
|  | r_unit = 'M'; | 
|  | } else { | 
|  | if (r >= 1000) { | 
|  | r /= 1000; | 
|  | r_unit = 'k'; | 
|  | } else { | 
|  | r_unit = ' '; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Calculate the ns resolution of this counter */ | 
|  | res = cyc_to_ns(1ULL, new_mult, new_shift); | 
|  |  | 
|  | pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n", | 
|  | bits, r, r_unit, res, wrap); | 
|  |  | 
|  | /* Enable IRQ time accounting if we have a fast enough sched_clock() */ | 
|  | if (irqtime > 0 || (irqtime == -1 && rate >= 1000000)) | 
|  | enable_sched_clock_irqtime(); | 
|  |  | 
|  | pr_debug("Registered %pF as sched_clock source\n", read); | 
|  | } | 
|  |  | 
|  | void __init sched_clock_postinit(void) | 
|  | { | 
|  | /* | 
|  | * If no sched_clock() function has been provided at that point, | 
|  | * make it the final one one. | 
|  | */ | 
|  | if (cd.actual_read_sched_clock == jiffy_sched_clock_read) | 
|  | sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ); | 
|  |  | 
|  | update_sched_clock(); | 
|  |  | 
|  | /* | 
|  | * Start the timer to keep sched_clock() properly updated and | 
|  | * sets the initial epoch. | 
|  | */ | 
|  | hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 
|  | sched_clock_timer.function = sched_clock_poll; | 
|  | hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clock read function for use when the clock is suspended. | 
|  | * | 
|  | * This function makes it appear to sched_clock() as if the clock | 
|  | * stopped counting at its last update. | 
|  | * | 
|  | * This function must only be called from the critical | 
|  | * section in sched_clock(). It relies on the read_seqcount_retry() | 
|  | * at the end of the critical section to be sure we observe the | 
|  | * correct copy of 'epoch_cyc'. | 
|  | */ | 
|  | static u64 notrace suspended_sched_clock_read(void) | 
|  | { | 
|  | unsigned long seq = raw_read_seqcount(&cd.seq); | 
|  |  | 
|  | return cd.read_data[seq & 1].epoch_cyc; | 
|  | } | 
|  |  | 
|  | static int sched_clock_suspend(void) | 
|  | { | 
|  | struct clock_read_data *rd = &cd.read_data[0]; | 
|  |  | 
|  | update_sched_clock(); | 
|  | hrtimer_cancel(&sched_clock_timer); | 
|  | rd->read_sched_clock = suspended_sched_clock_read; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void sched_clock_resume(void) | 
|  | { | 
|  | struct clock_read_data *rd = &cd.read_data[0]; | 
|  |  | 
|  | rd->epoch_cyc = cd.actual_read_sched_clock(); | 
|  | hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL); | 
|  | rd->read_sched_clock = cd.actual_read_sched_clock; | 
|  | } | 
|  |  | 
|  | static struct syscore_ops sched_clock_ops = { | 
|  | .suspend	= sched_clock_suspend, | 
|  | .resume		= sched_clock_resume, | 
|  | }; | 
|  |  | 
|  | static int __init sched_clock_syscore_init(void) | 
|  | { | 
|  | register_syscore_ops(&sched_clock_ops); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | device_initcall(sched_clock_syscore_init); |