| /* deflate.c - deflate/inflate code for gzip and friends |
| * |
| * Copyright 2014 Rob Landley <rob@landley.net> |
| * |
| * See RFCs 1950 (zlib), 1951 (deflate), and 1952 (gzip) |
| * LSB 4.1 has gzip, gunzip, and zcat |
| * |
| * TODO: zip -d DIR -x LIST -list -quiet -no overwrite -overwrite -p to stdout |
| */ |
| |
| #include "toys.h" |
| |
| struct deflate { |
| // Huffman codes: base offset and extra bits tables (length and distance) |
| char lenbits[29], distbits[30]; |
| unsigned short lenbase[29], distbase[30]; |
| void *fixdisthuff, *fixlithuff; |
| |
| // CRC |
| void (*crcfunc)(struct deflate *dd, char *data, int len); |
| unsigned crctable[256], crc; |
| |
| |
| // Tables only used for deflation |
| unsigned short *hashhead, *hashchain; |
| |
| // Compressed data buffer (extra space malloced at end) |
| unsigned pos, len; |
| int infd, outfd; |
| char data[]; |
| }; |
| |
| // little endian bit buffer |
| struct bitbuf { |
| int fd, bitpos, len, max; |
| char buf[]; |
| }; |
| |
| // malloc a struct bitbuf |
| static struct bitbuf *bitbuf_init(int fd, int size) |
| { |
| struct bitbuf *bb = xzalloc(sizeof(struct bitbuf)+size); |
| |
| bb->max = size; |
| bb->fd = fd; |
| |
| return bb; |
| } |
| |
| // Advance bitpos without the overhead of recording bits |
| // Loads more data when input buffer empty |
| static void bitbuf_skip(struct bitbuf *bb, int bits) |
| { |
| int pos = bb->bitpos + bits, len = bb->len << 3; |
| |
| while (pos >= len) { |
| pos -= len; |
| len = (bb->len = read(bb->fd, bb->buf, bb->max)) << 3; |
| if (bb->len < 1) perror_exit("inflate EOF"); |
| } |
| bb->bitpos = pos; |
| } |
| |
| // Optimized single bit inlined version |
| static inline int bitbuf_bit(struct bitbuf *bb) |
| { |
| int bufpos = bb->bitpos>>3; |
| |
| if (bufpos == bb->len) { |
| bitbuf_skip(bb, 0); |
| bufpos = 0; |
| } |
| |
| return (bb->buf[bufpos]>>(bb->bitpos++&7))&1; |
| } |
| |
| // Fetch the next X bits from the bitbuf, little endian |
| static unsigned bitbuf_get(struct bitbuf *bb, int bits) |
| { |
| int result = 0, offset = 0; |
| |
| while (bits) { |
| int click = bb->bitpos >> 3, blow, blen; |
| |
| // Load more data if buffer empty |
| if (click == bb->len) bitbuf_skip(bb, click = 0); |
| |
| // grab bits from next byte |
| blow = bb->bitpos & 7; |
| blen = 8-blow; |
| if (blen > bits) blen = bits; |
| result |= ((bb->buf[click] >> blow) & ((1<<blen)-1)) << offset; |
| offset += blen; |
| bits -= blen; |
| bb->bitpos += blen; |
| } |
| |
| return result; |
| } |
| |
| static void bitbuf_flush(struct bitbuf *bb) |
| { |
| if (!bb->bitpos) return; |
| |
| xwrite(bb->fd, bb->buf, (bb->bitpos+7)>>3); |
| memset(bb->buf, 0, bb->max); |
| bb->bitpos = 0; |
| } |
| |
| static void bitbuf_put(struct bitbuf *bb, int data, int len) |
| { |
| while (len) { |
| int click = bb->bitpos >> 3, blow, blen; |
| |
| // Flush buffer if necessary |
| if (click == bb->max) { |
| bitbuf_flush(bb); |
| click = 0; |
| } |
| blow = bb->bitpos & 7; |
| blen = 8-blow; |
| if (blen > len) blen = len; |
| bb->buf[click] |= data << blow; |
| bb->bitpos += blen; |
| data >>= blen; |
| len -= blen; |
| } |
| } |
| |
| static void output_byte(struct deflate *dd, char sym) |
| { |
| int pos = dd->pos++ & 32767; |
| |
| dd->data[pos] = sym; |
| |
| if (pos == 32767) { |
| xwrite(dd->outfd, dd->data, 32768); |
| if (dd->crcfunc) dd->crcfunc(dd, dd->data, 32768); |
| } |
| } |
| |
| // Huffman coding uses bits to traverse a binary tree to a leaf node, |
| // By placing frequently occurring symbols at shorter paths, frequently |
| // used symbols may be represented in fewer bits than uncommon symbols. |
| // (length[0] isn't used but code's clearer if it's there.) |
| |
| struct huff { |
| unsigned short length[16]; // How many symbols have this bit length? |
| unsigned short symbol[288]; // sorted by bit length, then ascending order |
| }; |
| |
| // Create simple huffman tree from array of bit lengths. |
| |
| // The symbols in the huffman trees are sorted (first by bit length |
| // of the code to reach them, then by symbol number). This means that given |
| // the bit length of each symbol, we can construct a unique tree. |
| static void len2huff(struct huff *huff, char bitlen[], int len) |
| { |
| int offset[16]; |
| int i; |
| |
| // Count number of codes at each bit length |
| memset(huff, 0, sizeof(struct huff)); |
| for (i = 0; i<len; i++) huff->length[bitlen[i]]++; |
| |
| // Sort symbols by bit length, then symbol. Get list of starting positions |
| // for each group, then write each symbol to next position within its group. |
| *huff->length = *offset = 0; |
| for (i = 1; i<16; i++) offset[i] = offset[i-1] + huff->length[i-1]; |
| for (i = 0; i<len; i++) if (bitlen[i]) huff->symbol[offset[bitlen[i]]++] = i; |
| } |
| |
| // Fetch and decode next huffman coded symbol from bitbuf. |
| // This takes advantage of the sorting to navigate the tree as an array: |
| // each time we fetch a bit we have all the codes at that bit level in |
| // order with no gaps. |
| static unsigned huff_and_puff(struct bitbuf *bb, struct huff *huff) |
| { |
| unsigned short *length = huff->length; |
| int start = 0, offset = 0; |
| |
| // Traverse through the bit lengths until our code is in this range |
| for (;;) { |
| offset = (offset << 1) | bitbuf_bit(bb); |
| start += *++length; |
| if ((offset -= *length) < 0) break; |
| if ((length - huff->length) & 16) error_exit("bad symbol"); |
| } |
| |
| return huff->symbol[start + offset]; |
| } |
| |
| // Decompress deflated data from bitbuf to dd->outfd. |
| static void inflate(struct deflate *dd, struct bitbuf *bb) |
| { |
| dd->crc = ~0; |
| // repeat until spanked |
| for (;;) { |
| int final, type; |
| |
| final = bitbuf_get(bb, 1); |
| type = bitbuf_get(bb, 2); |
| |
| if (type == 3) error_exit("bad type"); |
| |
| // Uncompressed block? |
| if (!type) { |
| int len, nlen; |
| |
| // Align to byte, read length |
| bitbuf_skip(bb, (8-bb->bitpos)&7); |
| len = bitbuf_get(bb, 16); |
| nlen = bitbuf_get(bb, 16); |
| if (len != (0xffff & ~nlen)) error_exit("bad len"); |
| |
| // Dump literal output data |
| while (len) { |
| int pos = bb->bitpos >> 3, bblen = bb->len - pos; |
| char *p = bb->buf+pos; |
| |
| // dump bytes until done or end of current bitbuf contents |
| if (bblen > len) bblen = len; |
| pos = bblen; |
| while (pos--) output_byte(dd, *(p++)); |
| bitbuf_skip(bb, bblen << 3); |
| len -= bblen; |
| } |
| |
| // Compressed block |
| } else { |
| struct huff *disthuff, *lithuff; |
| |
| // Dynamic huffman codes? |
| if (type == 2) { |
| struct huff *h2 = ((struct huff *)libbuf)+1; |
| int i, litlen, distlen, hufflen; |
| char *hufflen_order = "\x10\x11\x12\0\x08\x07\x09\x06\x0a\x05\x0b" |
| "\x04\x0c\x03\x0d\x02\x0e\x01\x0f", *bits; |
| |
| // The huffman trees are stored as a series of bit lengths |
| litlen = bitbuf_get(bb, 5)+257; // max 288 |
| distlen = bitbuf_get(bb, 5)+1; // max 32 |
| hufflen = bitbuf_get(bb, 4)+4; // max 19 |
| |
| // The literal and distance codes are themselves compressed, in |
| // a complicated way: an array of bit lengths (hufflen many |
| // entries, each 3 bits) is used to fill out an array of 19 entries |
| // in a magic order, leaving the rest 0. Then make a tree out of it: |
| memset(bits = libbuf+1, 0, 19); |
| for (i=0; i<hufflen; i++) bits[hufflen_order[i]] = bitbuf_get(bb, 3); |
| len2huff(h2, bits, 19); |
| |
| // Use that tree to read in the literal and distance bit lengths |
| for (i = 0; i < litlen + distlen;) { |
| int sym = huff_and_puff(bb, h2); |
| |
| // 0-15 are literals, 16 = repeat previous code 3-6 times, |
| // 17 = 3-10 zeroes (3 bit), 18 = 11-138 zeroes (7 bit) |
| if (sym < 16) bits[i++] = sym; |
| else { |
| int len = sym & 2; |
| |
| len = bitbuf_get(bb, sym-14+len+(len>>1)) + 3 + (len<<2); |
| memset(bits+i, bits[i-1] * !(sym&3), len); |
| i += len; |
| } |
| } |
| if (i > litlen+distlen) error_exit("bad tree"); |
| |
| len2huff(lithuff = h2, bits, litlen); |
| len2huff(disthuff = ((struct huff *)libbuf)+2, bits+litlen, distlen); |
| |
| // Static huffman codes |
| } else { |
| lithuff = dd->fixlithuff; |
| disthuff = dd->fixdisthuff; |
| } |
| |
| // Use huffman tables to decode block of compressed symbols |
| for (;;) { |
| int sym = huff_and_puff(bb, lithuff); |
| |
| // Literal? |
| if (sym < 256) output_byte(dd, sym); |
| |
| // Copy range? |
| else if (sym > 256) { |
| int len, dist; |
| |
| sym -= 257; |
| len = dd->lenbase[sym] + bitbuf_get(bb, dd->lenbits[sym]); |
| sym = huff_and_puff(bb, disthuff); |
| dist = dd->distbase[sym] + bitbuf_get(bb, dd->distbits[sym]); |
| sym = dd->pos & 32767; |
| |
| while (len--) output_byte(dd, dd->data[(dd->pos-dist) & 32767]); |
| |
| // End of block |
| } else break; |
| } |
| } |
| |
| // Was that the last block? |
| if (final) break; |
| } |
| |
| if (dd->pos & 32767) { |
| xwrite(dd->outfd, dd->data, dd->pos&32767); |
| if (dd->crcfunc) dd->crcfunc(dd, dd->data, dd->pos&32767); |
| } |
| } |
| |
| // Deflate from dd->infd to bitbuf |
| // For deflate, dd->len = input read, dd->pos = input consumed |
| static void deflate(struct deflate *dd, struct bitbuf *bb) |
| { |
| char *data = dd->data; |
| int len, final = 0; |
| |
| dd->crc = ~0; |
| |
| while (!final) { |
| // Read next half-window of data if we haven't hit EOF yet. |
| len = readall(dd->infd, data+(dd->len&32768), 32768); |
| if (len < 0) perror_exit("read"); // todo: add filename |
| if (len != 32768) final++; |
| if (dd->crcfunc) dd->crcfunc(dd, data+(dd->len&32768), len); |
| // dd->len += len; crcfunc advances len TODO |
| |
| // store block as literal |
| bitbuf_put(bb, final, 1); |
| bitbuf_put(bb, 0, 1); |
| |
| bitbuf_put(bb, 0, (8-bb->bitpos)&7); |
| bitbuf_put(bb, len, 16); |
| bitbuf_put(bb, 0xffff & ~len, 16); |
| |
| // repeat until spanked |
| while (dd->pos != dd->len) { |
| unsigned pos = dd->pos&65535; |
| |
| bitbuf_put(bb, data[pos], 8); |
| |
| // need to refill buffer? |
| if (!(32767 & ++dd->pos) && !final) break; |
| } |
| } |
| bitbuf_flush(bb); |
| } |
| |
| // Allocate memory for deflate/inflate. |
| static struct deflate *init_deflate(int compress) |
| { |
| int i, n = 1; |
| struct deflate *dd = xmalloc(sizeof(struct deflate)+32768*(compress ? 4 : 1)); |
| |
| memset(dd, 0, sizeof(struct deflate)); |
| // decompress needs 32k history, compress adds 64k hashhead and 32k hashchain |
| if (compress) { |
| dd->hashhead = (unsigned short *)(dd->data+65536); |
| dd->hashchain = (unsigned short *)(dd->data+65536+32768); |
| } |
| |
| // Calculate lenbits, lenbase, distbits, distbase |
| *dd->lenbase = 3; |
| for (i = 0; i<sizeof(dd->lenbits)-1; i++) { |
| if (i>4) { |
| if (!(i&3)) { |
| dd->lenbits[i]++; |
| n <<= 1; |
| } |
| if (i == 27) n--; |
| else dd->lenbits[i+1] = dd->lenbits[i]; |
| } |
| dd->lenbase[i+1] = n + dd->lenbase[i]; |
| } |
| n = 0; |
| for (i = 0; i<sizeof(dd->distbits); i++) { |
| dd->distbase[i] = 1<<n; |
| if (i) dd->distbase[i] += dd->distbase[i-1]; |
| if (i>3 && !(i&1)) n++; |
| dd->distbits[i] = n; |
| } |
| |
| // TODO layout and lifetime of this? |
| // Init fixed huffman tables |
| for (i=0; i<288; i++) libbuf[i] = 8 + (i>143) - ((i>255)<<1) + (i>279); |
| len2huff(dd->fixlithuff = ((struct huff *)libbuf)+3, libbuf, 288); |
| memset(libbuf, 5, 30); |
| len2huff(dd->fixdisthuff = ((struct huff *)libbuf)+4, libbuf, 30); |
| |
| return dd; |
| } |
| |
| // Return true/false whether we consumed a gzip header. |
| static int is_gzip(struct bitbuf *bb) |
| { |
| int flags; |
| |
| // Confirm signature |
| if (bitbuf_get(bb, 24) != 0x088b1f || (flags = bitbuf_get(bb, 8)) > 31) |
| return 0; |
| bitbuf_skip(bb, 6*8); |
| |
| // Skip extra, name, comment, header CRC fields |
| if (flags & 4) bitbuf_skip(bb, bitbuf_get(bb, 16) * 8); |
| if (flags & 8) while (bitbuf_get(bb, 8)); |
| if (flags & 16) while (bitbuf_get(bb, 8)); |
| if (flags & 2) bitbuf_skip(bb, 16); |
| |
| return 1; |
| } |
| |
| static void gzip_crc(struct deflate *dd, char *data, int len) |
| { |
| int i; |
| unsigned crc, *crc_table = dd->crctable; |
| |
| crc = dd->crc; |
| for (i=0; i<len; i++) crc = crc_table[(crc^data[i])&0xff] ^ (crc>>8); |
| dd->crc = crc; |
| dd->len += len; |
| } |
| |
| long long gzip_fd(int infd, int outfd) |
| { |
| struct bitbuf *bb = bitbuf_init(outfd, 4096); |
| struct deflate *dd = init_deflate(1); |
| long long rc; |
| |
| // Header from RFC 1952 section 2.2: |
| // 2 ID bytes (1F, 8b), gzip method byte (8=deflate), FLAG byte (none), |
| // 4 byte MTIME (zeroed), Extra Flags (2=maximum compression), |
| // Operating System (FF=unknown) |
| |
| dd->infd = infd; |
| xwrite(bb->fd, "\x1f\x8b\x08\0\0\0\0\0\x02\xff", 10); |
| |
| // Little endian crc table |
| crc_init(dd->crctable, 1); |
| dd->crcfunc = gzip_crc; |
| |
| deflate(dd, bb); |
| |
| // tail: crc32, len32 |
| |
| bitbuf_put(bb, 0, (8-bb->bitpos)&7); |
| bitbuf_put(bb, ~dd->crc, 32); |
| bitbuf_put(bb, dd->len, 32); |
| rc = dd->len; |
| |
| bitbuf_flush(bb); |
| free(bb); |
| free(dd); |
| |
| return rc; |
| } |
| |
| long long gunzip_fd(int infd, int outfd) |
| { |
| struct bitbuf *bb = bitbuf_init(infd, 4096); |
| struct deflate *dd = init_deflate(0); |
| long long rc; |
| |
| if (!is_gzip(bb)) error_exit("not gzip"); |
| dd->outfd = outfd; |
| |
| // Little endian crc table |
| crc_init(dd->crctable, 1); |
| dd->crcfunc = gzip_crc; |
| |
| inflate(dd, bb); |
| |
| // tail: crc32, len32 |
| |
| bitbuf_skip(bb, (8-bb->bitpos)&7); |
| if (~dd->crc != bitbuf_get(bb, 32) || dd->len != bitbuf_get(bb, 32)) |
| error_exit("bad crc"); |
| |
| rc = dd->len; |
| free(bb); |
| free(dd); |
| |
| return rc; |
| } |