| /* |
| * |
| * |
| * Procedures for interfacing to Open Firmware. |
| * |
| * Paul Mackerras August 1996. |
| * Copyright (C) 1996 Paul Mackerras. |
| * |
| * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. |
| * {engebret|bergner}@us.ibm.com |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #undef DEBUG |
| |
| #include <stdarg.h> |
| #include <linux/config.h> |
| #include <linux/kernel.h> |
| #include <linux/string.h> |
| #include <linux/init.h> |
| #include <linux/version.h> |
| #include <linux/threads.h> |
| #include <linux/spinlock.h> |
| #include <linux/types.h> |
| #include <linux/pci.h> |
| #include <linux/stringify.h> |
| #include <linux/delay.h> |
| #include <linux/initrd.h> |
| #include <linux/bitops.h> |
| #include <linux/module.h> |
| |
| #include <asm/prom.h> |
| #include <asm/rtas.h> |
| #include <asm/lmb.h> |
| #include <asm/abs_addr.h> |
| #include <asm/page.h> |
| #include <asm/processor.h> |
| #include <asm/irq.h> |
| #include <asm/io.h> |
| #include <asm/smp.h> |
| #include <asm/system.h> |
| #include <asm/mmu.h> |
| #include <asm/pgtable.h> |
| #include <asm/pci.h> |
| #include <asm/iommu.h> |
| #include <asm/bootinfo.h> |
| #include <asm/ppcdebug.h> |
| #include <asm/btext.h> |
| #include <asm/sections.h> |
| #include <asm/machdep.h> |
| #include <asm/pSeries_reconfig.h> |
| |
| #ifdef DEBUG |
| #define DBG(fmt...) udbg_printf(fmt) |
| #else |
| #define DBG(fmt...) |
| #endif |
| |
| struct pci_reg_property { |
| struct pci_address addr; |
| u32 size_hi; |
| u32 size_lo; |
| }; |
| |
| struct isa_reg_property { |
| u32 space; |
| u32 address; |
| u32 size; |
| }; |
| |
| |
| typedef int interpret_func(struct device_node *, unsigned long *, |
| int, int, int); |
| |
| extern struct rtas_t rtas; |
| extern struct lmb lmb; |
| extern unsigned long klimit; |
| |
| static int __initdata dt_root_addr_cells; |
| static int __initdata dt_root_size_cells; |
| static int __initdata iommu_is_off; |
| int __initdata iommu_force_on; |
| typedef u32 cell_t; |
| |
| #if 0 |
| static struct boot_param_header *initial_boot_params __initdata; |
| #else |
| struct boot_param_header *initial_boot_params; |
| #endif |
| |
| static struct device_node *allnodes = NULL; |
| |
| /* use when traversing tree through the allnext, child, sibling, |
| * or parent members of struct device_node. |
| */ |
| static DEFINE_RWLOCK(devtree_lock); |
| |
| /* export that to outside world */ |
| struct device_node *of_chosen; |
| |
| /* |
| * Wrapper for allocating memory for various data that needs to be |
| * attached to device nodes as they are processed at boot or when |
| * added to the device tree later (e.g. DLPAR). At boot there is |
| * already a region reserved so we just increment *mem_start by size; |
| * otherwise we call kmalloc. |
| */ |
| static void * prom_alloc(unsigned long size, unsigned long *mem_start) |
| { |
| unsigned long tmp; |
| |
| if (!mem_start) |
| return kmalloc(size, GFP_KERNEL); |
| |
| tmp = *mem_start; |
| *mem_start += size; |
| return (void *)tmp; |
| } |
| |
| /* |
| * Find the device_node with a given phandle. |
| */ |
| static struct device_node * find_phandle(phandle ph) |
| { |
| struct device_node *np; |
| |
| for (np = allnodes; np != 0; np = np->allnext) |
| if (np->linux_phandle == ph) |
| return np; |
| return NULL; |
| } |
| |
| /* |
| * Find the interrupt parent of a node. |
| */ |
| static struct device_node * __devinit intr_parent(struct device_node *p) |
| { |
| phandle *parp; |
| |
| parp = (phandle *) get_property(p, "interrupt-parent", NULL); |
| if (parp == NULL) |
| return p->parent; |
| return find_phandle(*parp); |
| } |
| |
| /* |
| * Find out the size of each entry of the interrupts property |
| * for a node. |
| */ |
| int __devinit prom_n_intr_cells(struct device_node *np) |
| { |
| struct device_node *p; |
| unsigned int *icp; |
| |
| for (p = np; (p = intr_parent(p)) != NULL; ) { |
| icp = (unsigned int *) |
| get_property(p, "#interrupt-cells", NULL); |
| if (icp != NULL) |
| return *icp; |
| if (get_property(p, "interrupt-controller", NULL) != NULL |
| || get_property(p, "interrupt-map", NULL) != NULL) { |
| printk("oops, node %s doesn't have #interrupt-cells\n", |
| p->full_name); |
| return 1; |
| } |
| } |
| #ifdef DEBUG_IRQ |
| printk("prom_n_intr_cells failed for %s\n", np->full_name); |
| #endif |
| return 1; |
| } |
| |
| /* |
| * Map an interrupt from a device up to the platform interrupt |
| * descriptor. |
| */ |
| static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler, |
| struct device_node *np, unsigned int *ints, |
| int nintrc) |
| { |
| struct device_node *p, *ipar; |
| unsigned int *imap, *imask, *ip; |
| int i, imaplen, match; |
| int newintrc = 0, newaddrc = 0; |
| unsigned int *reg; |
| int naddrc; |
| |
| reg = (unsigned int *) get_property(np, "reg", NULL); |
| naddrc = prom_n_addr_cells(np); |
| p = intr_parent(np); |
| while (p != NULL) { |
| if (get_property(p, "interrupt-controller", NULL) != NULL) |
| /* this node is an interrupt controller, stop here */ |
| break; |
| imap = (unsigned int *) |
| get_property(p, "interrupt-map", &imaplen); |
| if (imap == NULL) { |
| p = intr_parent(p); |
| continue; |
| } |
| imask = (unsigned int *) |
| get_property(p, "interrupt-map-mask", NULL); |
| if (imask == NULL) { |
| printk("oops, %s has interrupt-map but no mask\n", |
| p->full_name); |
| return 0; |
| } |
| imaplen /= sizeof(unsigned int); |
| match = 0; |
| ipar = NULL; |
| while (imaplen > 0 && !match) { |
| /* check the child-interrupt field */ |
| match = 1; |
| for (i = 0; i < naddrc && match; ++i) |
| match = ((reg[i] ^ imap[i]) & imask[i]) == 0; |
| for (; i < naddrc + nintrc && match; ++i) |
| match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0; |
| imap += naddrc + nintrc; |
| imaplen -= naddrc + nintrc; |
| /* grab the interrupt parent */ |
| ipar = find_phandle((phandle) *imap++); |
| --imaplen; |
| if (ipar == NULL) { |
| printk("oops, no int parent %x in map of %s\n", |
| imap[-1], p->full_name); |
| return 0; |
| } |
| /* find the parent's # addr and intr cells */ |
| ip = (unsigned int *) |
| get_property(ipar, "#interrupt-cells", NULL); |
| if (ip == NULL) { |
| printk("oops, no #interrupt-cells on %s\n", |
| ipar->full_name); |
| return 0; |
| } |
| newintrc = *ip; |
| ip = (unsigned int *) |
| get_property(ipar, "#address-cells", NULL); |
| newaddrc = (ip == NULL)? 0: *ip; |
| imap += newaddrc + newintrc; |
| imaplen -= newaddrc + newintrc; |
| } |
| if (imaplen < 0) { |
| printk("oops, error decoding int-map on %s, len=%d\n", |
| p->full_name, imaplen); |
| return 0; |
| } |
| if (!match) { |
| #ifdef DEBUG_IRQ |
| printk("oops, no match in %s int-map for %s\n", |
| p->full_name, np->full_name); |
| #endif |
| return 0; |
| } |
| p = ipar; |
| naddrc = newaddrc; |
| nintrc = newintrc; |
| ints = imap - nintrc; |
| reg = ints - naddrc; |
| } |
| if (p == NULL) { |
| #ifdef DEBUG_IRQ |
| printk("hmmm, int tree for %s doesn't have ctrler\n", |
| np->full_name); |
| #endif |
| return 0; |
| } |
| *irq = ints; |
| *ictrler = p; |
| return nintrc; |
| } |
| |
| static int __devinit finish_node_interrupts(struct device_node *np, |
| unsigned long *mem_start, |
| int measure_only) |
| { |
| unsigned int *ints; |
| int intlen, intrcells, intrcount; |
| int i, j, n; |
| unsigned int *irq, virq; |
| struct device_node *ic; |
| |
| ints = (unsigned int *) get_property(np, "interrupts", &intlen); |
| if (ints == NULL) |
| return 0; |
| intrcells = prom_n_intr_cells(np); |
| intlen /= intrcells * sizeof(unsigned int); |
| |
| np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start); |
| if (!np->intrs) |
| return -ENOMEM; |
| |
| if (measure_only) |
| return 0; |
| |
| intrcount = 0; |
| for (i = 0; i < intlen; ++i, ints += intrcells) { |
| n = map_interrupt(&irq, &ic, np, ints, intrcells); |
| if (n <= 0) |
| continue; |
| |
| /* don't map IRQ numbers under a cascaded 8259 controller */ |
| if (ic && device_is_compatible(ic, "chrp,iic")) { |
| np->intrs[intrcount].line = irq[0]; |
| } else { |
| virq = virt_irq_create_mapping(irq[0]); |
| if (virq == NO_IRQ) { |
| printk(KERN_CRIT "Could not allocate interrupt" |
| " number for %s\n", np->full_name); |
| continue; |
| } |
| np->intrs[intrcount].line = irq_offset_up(virq); |
| } |
| |
| /* We offset irq numbers for the u3 MPIC by 128 in PowerMac */ |
| if (systemcfg->platform == PLATFORM_POWERMAC && ic && ic->parent) { |
| char *name = get_property(ic->parent, "name", NULL); |
| if (name && !strcmp(name, "u3")) |
| np->intrs[intrcount].line += 128; |
| } |
| np->intrs[intrcount].sense = 1; |
| if (n > 1) |
| np->intrs[intrcount].sense = irq[1]; |
| if (n > 2) { |
| printk("hmmm, got %d intr cells for %s:", n, |
| np->full_name); |
| for (j = 0; j < n; ++j) |
| printk(" %d", irq[j]); |
| printk("\n"); |
| } |
| ++intrcount; |
| } |
| np->n_intrs = intrcount; |
| |
| return 0; |
| } |
| |
| static int __devinit interpret_pci_props(struct device_node *np, |
| unsigned long *mem_start, |
| int naddrc, int nsizec, |
| int measure_only) |
| { |
| struct address_range *adr; |
| struct pci_reg_property *pci_addrs; |
| int i, l, n_addrs; |
| |
| pci_addrs = (struct pci_reg_property *) |
| get_property(np, "assigned-addresses", &l); |
| if (!pci_addrs) |
| return 0; |
| |
| n_addrs = l / sizeof(*pci_addrs); |
| |
| adr = prom_alloc(n_addrs * sizeof(*adr), mem_start); |
| if (!adr) |
| return -ENOMEM; |
| |
| if (measure_only) |
| return 0; |
| |
| np->addrs = adr; |
| np->n_addrs = n_addrs; |
| |
| for (i = 0; i < n_addrs; i++) { |
| adr[i].space = pci_addrs[i].addr.a_hi; |
| adr[i].address = pci_addrs[i].addr.a_lo | |
| ((u64)pci_addrs[i].addr.a_mid << 32); |
| adr[i].size = pci_addrs[i].size_lo; |
| } |
| |
| return 0; |
| } |
| |
| static int __init interpret_dbdma_props(struct device_node *np, |
| unsigned long *mem_start, |
| int naddrc, int nsizec, |
| int measure_only) |
| { |
| struct reg_property32 *rp; |
| struct address_range *adr; |
| unsigned long base_address; |
| int i, l; |
| struct device_node *db; |
| |
| base_address = 0; |
| if (!measure_only) { |
| for (db = np->parent; db != NULL; db = db->parent) { |
| if (!strcmp(db->type, "dbdma") && db->n_addrs != 0) { |
| base_address = db->addrs[0].address; |
| break; |
| } |
| } |
| } |
| |
| rp = (struct reg_property32 *) get_property(np, "reg", &l); |
| if (rp != 0 && l >= sizeof(struct reg_property32)) { |
| i = 0; |
| adr = (struct address_range *) (*mem_start); |
| while ((l -= sizeof(struct reg_property32)) >= 0) { |
| if (!measure_only) { |
| adr[i].space = 2; |
| adr[i].address = rp[i].address + base_address; |
| adr[i].size = rp[i].size; |
| } |
| ++i; |
| } |
| np->addrs = adr; |
| np->n_addrs = i; |
| (*mem_start) += i * sizeof(struct address_range); |
| } |
| |
| return 0; |
| } |
| |
| static int __init interpret_macio_props(struct device_node *np, |
| unsigned long *mem_start, |
| int naddrc, int nsizec, |
| int measure_only) |
| { |
| struct reg_property32 *rp; |
| struct address_range *adr; |
| unsigned long base_address; |
| int i, l; |
| struct device_node *db; |
| |
| base_address = 0; |
| if (!measure_only) { |
| for (db = np->parent; db != NULL; db = db->parent) { |
| if (!strcmp(db->type, "mac-io") && db->n_addrs != 0) { |
| base_address = db->addrs[0].address; |
| break; |
| } |
| } |
| } |
| |
| rp = (struct reg_property32 *) get_property(np, "reg", &l); |
| if (rp != 0 && l >= sizeof(struct reg_property32)) { |
| i = 0; |
| adr = (struct address_range *) (*mem_start); |
| while ((l -= sizeof(struct reg_property32)) >= 0) { |
| if (!measure_only) { |
| adr[i].space = 2; |
| adr[i].address = rp[i].address + base_address; |
| adr[i].size = rp[i].size; |
| } |
| ++i; |
| } |
| np->addrs = adr; |
| np->n_addrs = i; |
| (*mem_start) += i * sizeof(struct address_range); |
| } |
| |
| return 0; |
| } |
| |
| static int __init interpret_isa_props(struct device_node *np, |
| unsigned long *mem_start, |
| int naddrc, int nsizec, |
| int measure_only) |
| { |
| struct isa_reg_property *rp; |
| struct address_range *adr; |
| int i, l; |
| |
| rp = (struct isa_reg_property *) get_property(np, "reg", &l); |
| if (rp != 0 && l >= sizeof(struct isa_reg_property)) { |
| i = 0; |
| adr = (struct address_range *) (*mem_start); |
| while ((l -= sizeof(struct isa_reg_property)) >= 0) { |
| if (!measure_only) { |
| adr[i].space = rp[i].space; |
| adr[i].address = rp[i].address; |
| adr[i].size = rp[i].size; |
| } |
| ++i; |
| } |
| np->addrs = adr; |
| np->n_addrs = i; |
| (*mem_start) += i * sizeof(struct address_range); |
| } |
| |
| return 0; |
| } |
| |
| static int __init interpret_root_props(struct device_node *np, |
| unsigned long *mem_start, |
| int naddrc, int nsizec, |
| int measure_only) |
| { |
| struct address_range *adr; |
| int i, l; |
| unsigned int *rp; |
| int rpsize = (naddrc + nsizec) * sizeof(unsigned int); |
| |
| rp = (unsigned int *) get_property(np, "reg", &l); |
| if (rp != 0 && l >= rpsize) { |
| i = 0; |
| adr = (struct address_range *) (*mem_start); |
| while ((l -= rpsize) >= 0) { |
| if (!measure_only) { |
| adr[i].space = 0; |
| adr[i].address = rp[naddrc - 1]; |
| adr[i].size = rp[naddrc + nsizec - 1]; |
| } |
| ++i; |
| rp += naddrc + nsizec; |
| } |
| np->addrs = adr; |
| np->n_addrs = i; |
| (*mem_start) += i * sizeof(struct address_range); |
| } |
| |
| return 0; |
| } |
| |
| static int __devinit finish_node(struct device_node *np, |
| unsigned long *mem_start, |
| interpret_func *ifunc, |
| int naddrc, int nsizec, |
| int measure_only) |
| { |
| struct device_node *child; |
| int *ip, rc = 0; |
| |
| /* get the device addresses and interrupts */ |
| if (ifunc != NULL) |
| rc = ifunc(np, mem_start, naddrc, nsizec, measure_only); |
| if (rc) |
| goto out; |
| |
| rc = finish_node_interrupts(np, mem_start, measure_only); |
| if (rc) |
| goto out; |
| |
| /* Look for #address-cells and #size-cells properties. */ |
| ip = (int *) get_property(np, "#address-cells", NULL); |
| if (ip != NULL) |
| naddrc = *ip; |
| ip = (int *) get_property(np, "#size-cells", NULL); |
| if (ip != NULL) |
| nsizec = *ip; |
| |
| /* the f50 sets the name to 'display' and 'compatible' to what we |
| * expect for the name -- Cort |
| */ |
| if (!strcmp(np->name, "display")) |
| np->name = get_property(np, "compatible", NULL); |
| |
| if (!strcmp(np->name, "device-tree") || np->parent == NULL) |
| ifunc = interpret_root_props; |
| else if (np->type == 0) |
| ifunc = NULL; |
| else if (!strcmp(np->type, "pci") || !strcmp(np->type, "vci")) |
| ifunc = interpret_pci_props; |
| else if (!strcmp(np->type, "dbdma")) |
| ifunc = interpret_dbdma_props; |
| else if (!strcmp(np->type, "mac-io") || ifunc == interpret_macio_props) |
| ifunc = interpret_macio_props; |
| else if (!strcmp(np->type, "isa")) |
| ifunc = interpret_isa_props; |
| else if (!strcmp(np->name, "uni-n") || !strcmp(np->name, "u3")) |
| ifunc = interpret_root_props; |
| else if (!((ifunc == interpret_dbdma_props |
| || ifunc == interpret_macio_props) |
| && (!strcmp(np->type, "escc") |
| || !strcmp(np->type, "media-bay")))) |
| ifunc = NULL; |
| |
| for (child = np->child; child != NULL; child = child->sibling) { |
| rc = finish_node(child, mem_start, ifunc, |
| naddrc, nsizec, measure_only); |
| if (rc) |
| goto out; |
| } |
| out: |
| return rc; |
| } |
| |
| /** |
| * finish_device_tree is called once things are running normally |
| * (i.e. with text and data mapped to the address they were linked at). |
| * It traverses the device tree and fills in some of the additional, |
| * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt |
| * mapping is also initialized at this point. |
| */ |
| void __init finish_device_tree(void) |
| { |
| unsigned long start, end, size = 0; |
| |
| DBG(" -> finish_device_tree\n"); |
| |
| if (ppc64_interrupt_controller == IC_INVALID) { |
| DBG("failed to configure interrupt controller type\n"); |
| panic("failed to configure interrupt controller type\n"); |
| } |
| |
| /* Initialize virtual IRQ map */ |
| virt_irq_init(); |
| |
| /* |
| * Finish device-tree (pre-parsing some properties etc...) |
| * We do this in 2 passes. One with "measure_only" set, which |
| * will only measure the amount of memory needed, then we can |
| * allocate that memory, and call finish_node again. However, |
| * we must be careful as most routines will fail nowadays when |
| * prom_alloc() returns 0, so we must make sure our first pass |
| * doesn't start at 0. We pre-initialize size to 16 for that |
| * reason and then remove those additional 16 bytes |
| */ |
| size = 16; |
| finish_node(allnodes, &size, NULL, 0, 0, 1); |
| size -= 16; |
| end = start = (unsigned long)abs_to_virt(lmb_alloc(size, 128)); |
| finish_node(allnodes, &end, NULL, 0, 0, 0); |
| BUG_ON(end != start + size); |
| |
| DBG(" <- finish_device_tree\n"); |
| } |
| |
| #ifdef DEBUG |
| #define printk udbg_printf |
| #endif |
| |
| static inline char *find_flat_dt_string(u32 offset) |
| { |
| return ((char *)initial_boot_params) + initial_boot_params->off_dt_strings |
| + offset; |
| } |
| |
| /** |
| * This function is used to scan the flattened device-tree, it is |
| * used to extract the memory informations at boot before we can |
| * unflatten the tree |
| */ |
| static int __init scan_flat_dt(int (*it)(unsigned long node, |
| const char *full_path, void *data), |
| void *data) |
| { |
| unsigned long p = ((unsigned long)initial_boot_params) + |
| initial_boot_params->off_dt_struct; |
| int rc = 0; |
| |
| do { |
| u32 tag = *((u32 *)p); |
| char *pathp; |
| |
| p += 4; |
| if (tag == OF_DT_END_NODE) |
| continue; |
| if (tag == OF_DT_END) |
| break; |
| if (tag == OF_DT_PROP) { |
| u32 sz = *((u32 *)p); |
| p += 8; |
| p = _ALIGN(p, sz >= 8 ? 8 : 4); |
| p += sz; |
| p = _ALIGN(p, 4); |
| continue; |
| } |
| if (tag != OF_DT_BEGIN_NODE) { |
| printk(KERN_WARNING "Invalid tag %x scanning flattened" |
| " device tree !\n", tag); |
| return -EINVAL; |
| } |
| pathp = (char *)p; |
| p = _ALIGN(p + strlen(pathp) + 1, 4); |
| rc = it(p, pathp, data); |
| if (rc != 0) |
| break; |
| } while(1); |
| |
| return rc; |
| } |
| |
| /** |
| * This function can be used within scan_flattened_dt callback to get |
| * access to properties |
| */ |
| static void* __init get_flat_dt_prop(unsigned long node, const char *name, |
| unsigned long *size) |
| { |
| unsigned long p = node; |
| |
| do { |
| u32 tag = *((u32 *)p); |
| u32 sz, noff; |
| const char *nstr; |
| |
| p += 4; |
| if (tag != OF_DT_PROP) |
| return NULL; |
| |
| sz = *((u32 *)p); |
| noff = *((u32 *)(p + 4)); |
| p += 8; |
| p = _ALIGN(p, sz >= 8 ? 8 : 4); |
| |
| nstr = find_flat_dt_string(noff); |
| if (nstr == NULL) { |
| printk(KERN_WARNING "Can't find property index name !\n"); |
| return NULL; |
| } |
| if (strcmp(name, nstr) == 0) { |
| if (size) |
| *size = sz; |
| return (void *)p; |
| } |
| p += sz; |
| p = _ALIGN(p, 4); |
| } while(1); |
| } |
| |
| static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size, |
| unsigned long align) |
| { |
| void *res; |
| |
| *mem = _ALIGN(*mem, align); |
| res = (void *)*mem; |
| *mem += size; |
| |
| return res; |
| } |
| |
| static unsigned long __init unflatten_dt_node(unsigned long mem, |
| unsigned long *p, |
| struct device_node *dad, |
| struct device_node ***allnextpp) |
| { |
| struct device_node *np; |
| struct property *pp, **prev_pp = NULL; |
| char *pathp; |
| u32 tag; |
| unsigned int l; |
| |
| tag = *((u32 *)(*p)); |
| if (tag != OF_DT_BEGIN_NODE) { |
| printk("Weird tag at start of node: %x\n", tag); |
| return mem; |
| } |
| *p += 4; |
| pathp = (char *)*p; |
| l = strlen(pathp) + 1; |
| *p = _ALIGN(*p + l, 4); |
| |
| np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + l, |
| __alignof__(struct device_node)); |
| if (allnextpp) { |
| memset(np, 0, sizeof(*np)); |
| np->full_name = ((char*)np) + sizeof(struct device_node); |
| memcpy(np->full_name, pathp, l); |
| prev_pp = &np->properties; |
| **allnextpp = np; |
| *allnextpp = &np->allnext; |
| if (dad != NULL) { |
| np->parent = dad; |
| /* we temporarily use the `next' field as `last_child'. */ |
| if (dad->next == 0) |
| dad->child = np; |
| else |
| dad->next->sibling = np; |
| dad->next = np; |
| } |
| kref_init(&np->kref); |
| } |
| while(1) { |
| u32 sz, noff; |
| char *pname; |
| |
| tag = *((u32 *)(*p)); |
| if (tag != OF_DT_PROP) |
| break; |
| *p += 4; |
| sz = *((u32 *)(*p)); |
| noff = *((u32 *)((*p) + 4)); |
| *p = _ALIGN((*p) + 8, sz >= 8 ? 8 : 4); |
| |
| pname = find_flat_dt_string(noff); |
| if (pname == NULL) { |
| printk("Can't find property name in list !\n"); |
| break; |
| } |
| l = strlen(pname) + 1; |
| pp = unflatten_dt_alloc(&mem, sizeof(struct property), |
| __alignof__(struct property)); |
| if (allnextpp) { |
| if (strcmp(pname, "linux,phandle") == 0) { |
| np->node = *((u32 *)*p); |
| if (np->linux_phandle == 0) |
| np->linux_phandle = np->node; |
| } |
| if (strcmp(pname, "ibm,phandle") == 0) |
| np->linux_phandle = *((u32 *)*p); |
| pp->name = pname; |
| pp->length = sz; |
| pp->value = (void *)*p; |
| *prev_pp = pp; |
| prev_pp = &pp->next; |
| } |
| *p = _ALIGN((*p) + sz, 4); |
| } |
| if (allnextpp) { |
| *prev_pp = NULL; |
| np->name = get_property(np, "name", NULL); |
| np->type = get_property(np, "device_type", NULL); |
| |
| if (!np->name) |
| np->name = "<NULL>"; |
| if (!np->type) |
| np->type = "<NULL>"; |
| } |
| while (tag == OF_DT_BEGIN_NODE) { |
| mem = unflatten_dt_node(mem, p, np, allnextpp); |
| tag = *((u32 *)(*p)); |
| } |
| if (tag != OF_DT_END_NODE) { |
| printk("Weird tag at start of node: %x\n", tag); |
| return mem; |
| } |
| *p += 4; |
| return mem; |
| } |
| |
| |
| /** |
| * unflattens the device-tree passed by the firmware, creating the |
| * tree of struct device_node. It also fills the "name" and "type" |
| * pointers of the nodes so the normal device-tree walking functions |
| * can be used (this used to be done by finish_device_tree) |
| */ |
| void __init unflatten_device_tree(void) |
| { |
| unsigned long start, mem, size; |
| struct device_node **allnextp = &allnodes; |
| char *p; |
| int l = 0; |
| |
| DBG(" -> unflatten_device_tree()\n"); |
| |
| /* First pass, scan for size */ |
| start = ((unsigned long)initial_boot_params) + |
| initial_boot_params->off_dt_struct; |
| size = unflatten_dt_node(0, &start, NULL, NULL); |
| |
| DBG(" size is %lx, allocating...\n", size); |
| |
| /* Allocate memory for the expanded device tree */ |
| mem = (unsigned long)abs_to_virt(lmb_alloc(size, |
| __alignof__(struct device_node))); |
| DBG(" unflattening...\n", mem); |
| |
| /* Second pass, do actual unflattening */ |
| start = ((unsigned long)initial_boot_params) + |
| initial_boot_params->off_dt_struct; |
| unflatten_dt_node(mem, &start, NULL, &allnextp); |
| if (*((u32 *)start) != OF_DT_END) |
| printk(KERN_WARNING "Weird tag at end of tree: %x\n", *((u32 *)start)); |
| *allnextp = NULL; |
| |
| /* Get pointer to OF "/chosen" node for use everywhere */ |
| of_chosen = of_find_node_by_path("/chosen"); |
| |
| /* Retreive command line */ |
| if (of_chosen != NULL) { |
| p = (char *)get_property(of_chosen, "bootargs", &l); |
| if (p != NULL && l > 0) |
| strlcpy(cmd_line, p, min(l, COMMAND_LINE_SIZE)); |
| } |
| #ifdef CONFIG_CMDLINE |
| if (l == 0 || (l == 1 && (*p) == 0)) |
| strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE); |
| #endif /* CONFIG_CMDLINE */ |
| |
| DBG("Command line is: %s\n", cmd_line); |
| |
| DBG(" <- unflatten_device_tree()\n"); |
| } |
| |
| |
| static int __init early_init_dt_scan_cpus(unsigned long node, |
| const char *full_path, void *data) |
| { |
| char *type = get_flat_dt_prop(node, "device_type", NULL); |
| |
| /* We are scanning "cpu" nodes only */ |
| if (type == NULL || strcmp(type, "cpu") != 0) |
| return 0; |
| |
| /* On LPAR, look for the first ibm,pft-size property for the hash table size |
| */ |
| if (systemcfg->platform == PLATFORM_PSERIES_LPAR && ppc64_pft_size == 0) { |
| u32 *pft_size; |
| pft_size = (u32 *)get_flat_dt_prop(node, "ibm,pft-size", NULL); |
| if (pft_size != NULL) { |
| /* pft_size[0] is the NUMA CEC cookie */ |
| ppc64_pft_size = pft_size[1]; |
| } |
| } |
| |
| if (initial_boot_params && initial_boot_params->version >= 2) { |
| /* version 2 of the kexec param format adds the phys cpuid |
| * of booted proc. |
| */ |
| boot_cpuid_phys = initial_boot_params->boot_cpuid_phys; |
| boot_cpuid = 0; |
| } else { |
| /* Check if it's the boot-cpu, set it's hw index in paca now */ |
| if (get_flat_dt_prop(node, "linux,boot-cpu", NULL) != NULL) { |
| u32 *prop = get_flat_dt_prop(node, "reg", NULL); |
| set_hard_smp_processor_id(0, prop == NULL ? 0 : *prop); |
| boot_cpuid_phys = get_hard_smp_processor_id(0); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int __init early_init_dt_scan_chosen(unsigned long node, |
| const char *full_path, void *data) |
| { |
| u32 *prop; |
| u64 *prop64; |
| extern unsigned long memory_limit, tce_alloc_start, tce_alloc_end; |
| |
| if (strcmp(full_path, "/chosen") != 0) |
| return 0; |
| |
| /* get platform type */ |
| prop = (u32 *)get_flat_dt_prop(node, "linux,platform", NULL); |
| if (prop == NULL) |
| return 0; |
| systemcfg->platform = *prop; |
| |
| /* check if iommu is forced on or off */ |
| if (get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL) |
| iommu_is_off = 1; |
| if (get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL) |
| iommu_force_on = 1; |
| |
| prop64 = (u64*)get_flat_dt_prop(node, "linux,memory-limit", NULL); |
| if (prop64) |
| memory_limit = *prop64; |
| |
| prop64 = (u64*)get_flat_dt_prop(node, "linux,tce-alloc-start", NULL); |
| if (prop64) |
| tce_alloc_start = *prop64; |
| |
| prop64 = (u64*)get_flat_dt_prop(node, "linux,tce-alloc-end", NULL); |
| if (prop64) |
| tce_alloc_end = *prop64; |
| |
| #ifdef CONFIG_PPC_RTAS |
| /* To help early debugging via the front panel, we retreive a minimal |
| * set of RTAS infos now if available |
| */ |
| { |
| u64 *basep, *entryp; |
| |
| basep = (u64*)get_flat_dt_prop(node, "linux,rtas-base", NULL); |
| entryp = (u64*)get_flat_dt_prop(node, "linux,rtas-entry", NULL); |
| prop = (u32*)get_flat_dt_prop(node, "linux,rtas-size", NULL); |
| if (basep && entryp && prop) { |
| rtas.base = *basep; |
| rtas.entry = *entryp; |
| rtas.size = *prop; |
| } |
| } |
| #endif /* CONFIG_PPC_RTAS */ |
| |
| /* break now */ |
| return 1; |
| } |
| |
| static int __init early_init_dt_scan_root(unsigned long node, |
| const char *full_path, void *data) |
| { |
| u32 *prop; |
| |
| if (strcmp(full_path, "/") != 0) |
| return 0; |
| |
| prop = (u32 *)get_flat_dt_prop(node, "#size-cells", NULL); |
| dt_root_size_cells = (prop == NULL) ? 1 : *prop; |
| |
| prop = (u32 *)get_flat_dt_prop(node, "#address-cells", NULL); |
| dt_root_addr_cells = (prop == NULL) ? 2 : *prop; |
| |
| /* break now */ |
| return 1; |
| } |
| |
| static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp) |
| { |
| cell_t *p = *cellp; |
| unsigned long r = 0; |
| |
| /* Ignore more than 2 cells */ |
| while (s > 2) { |
| p++; |
| s--; |
| } |
| while (s) { |
| r <<= 32; |
| r |= *(p++); |
| s--; |
| } |
| |
| *cellp = p; |
| return r; |
| } |
| |
| |
| static int __init early_init_dt_scan_memory(unsigned long node, |
| const char *full_path, void *data) |
| { |
| char *type = get_flat_dt_prop(node, "device_type", NULL); |
| cell_t *reg, *endp; |
| unsigned long l; |
| |
| /* We are scanning "memory" nodes only */ |
| if (type == NULL || strcmp(type, "memory") != 0) |
| return 0; |
| |
| reg = (cell_t *)get_flat_dt_prop(node, "reg", &l); |
| if (reg == NULL) |
| return 0; |
| |
| endp = reg + (l / sizeof(cell_t)); |
| |
| DBG("memory scan node %s ...\n", full_path); |
| while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) { |
| unsigned long base, size; |
| |
| base = dt_mem_next_cell(dt_root_addr_cells, ®); |
| size = dt_mem_next_cell(dt_root_size_cells, ®); |
| |
| if (size == 0) |
| continue; |
| DBG(" - %lx , %lx\n", base, size); |
| if (iommu_is_off) { |
| if (base >= 0x80000000ul) |
| continue; |
| if ((base + size) > 0x80000000ul) |
| size = 0x80000000ul - base; |
| } |
| lmb_add(base, size); |
| } |
| return 0; |
| } |
| |
| static void __init early_reserve_mem(void) |
| { |
| u64 base, size; |
| u64 *reserve_map = (u64 *)(((unsigned long)initial_boot_params) + |
| initial_boot_params->off_mem_rsvmap); |
| while (1) { |
| base = *(reserve_map++); |
| size = *(reserve_map++); |
| if (size == 0) |
| break; |
| DBG("reserving: %lx -> %lx\n", base, size); |
| lmb_reserve(base, size); |
| } |
| |
| #if 0 |
| DBG("memory reserved, lmbs :\n"); |
| lmb_dump_all(); |
| #endif |
| } |
| |
| void __init early_init_devtree(void *params) |
| { |
| DBG(" -> early_init_devtree()\n"); |
| |
| /* Setup flat device-tree pointer */ |
| initial_boot_params = params; |
| |
| /* By default, hash size is not set */ |
| ppc64_pft_size = 0; |
| |
| /* Retreive various informations from the /chosen node of the |
| * device-tree, including the platform type, initrd location and |
| * size, TCE reserve, and more ... |
| */ |
| scan_flat_dt(early_init_dt_scan_chosen, NULL); |
| |
| /* Scan memory nodes and rebuild LMBs */ |
| lmb_init(); |
| scan_flat_dt(early_init_dt_scan_root, NULL); |
| scan_flat_dt(early_init_dt_scan_memory, NULL); |
| lmb_enforce_memory_limit(); |
| lmb_analyze(); |
| systemcfg->physicalMemorySize = lmb_phys_mem_size(); |
| lmb_reserve(0, __pa(klimit)); |
| |
| DBG("Phys. mem: %lx\n", systemcfg->physicalMemorySize); |
| |
| /* Reserve LMB regions used by kernel, initrd, dt, etc... */ |
| early_reserve_mem(); |
| |
| DBG("Scanning CPUs ...\n"); |
| |
| /* Retreive hash table size from flattened tree */ |
| scan_flat_dt(early_init_dt_scan_cpus, NULL); |
| |
| /* If hash size wasn't obtained above, we calculate it now based on |
| * the total RAM size |
| */ |
| if (ppc64_pft_size == 0) { |
| unsigned long rnd_mem_size, pteg_count; |
| |
| /* round mem_size up to next power of 2 */ |
| rnd_mem_size = 1UL << __ilog2(systemcfg->physicalMemorySize); |
| if (rnd_mem_size < systemcfg->physicalMemorySize) |
| rnd_mem_size <<= 1; |
| |
| /* # pages / 2 */ |
| pteg_count = max(rnd_mem_size >> (12 + 1), 1UL << 11); |
| |
| ppc64_pft_size = __ilog2(pteg_count << 7); |
| } |
| |
| DBG("Hash pftSize: %x\n", (int)ppc64_pft_size); |
| DBG(" <- early_init_devtree()\n"); |
| } |
| |
| #undef printk |
| |
| int |
| prom_n_addr_cells(struct device_node* np) |
| { |
| int* ip; |
| do { |
| if (np->parent) |
| np = np->parent; |
| ip = (int *) get_property(np, "#address-cells", NULL); |
| if (ip != NULL) |
| return *ip; |
| } while (np->parent); |
| /* No #address-cells property for the root node, default to 1 */ |
| return 1; |
| } |
| |
| int |
| prom_n_size_cells(struct device_node* np) |
| { |
| int* ip; |
| do { |
| if (np->parent) |
| np = np->parent; |
| ip = (int *) get_property(np, "#size-cells", NULL); |
| if (ip != NULL) |
| return *ip; |
| } while (np->parent); |
| /* No #size-cells property for the root node, default to 1 */ |
| return 1; |
| } |
| |
| /** |
| * Work out the sense (active-low level / active-high edge) |
| * of each interrupt from the device tree. |
| */ |
| void __init prom_get_irq_senses(unsigned char *senses, int off, int max) |
| { |
| struct device_node *np; |
| int i, j; |
| |
| /* default to level-triggered */ |
| memset(senses, 1, max - off); |
| |
| for (np = allnodes; np != 0; np = np->allnext) { |
| for (j = 0; j < np->n_intrs; j++) { |
| i = np->intrs[j].line; |
| if (i >= off && i < max) |
| senses[i-off] = np->intrs[j].sense ? |
| IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE : |
| IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE; |
| } |
| } |
| } |
| |
| /** |
| * Construct and return a list of the device_nodes with a given name. |
| */ |
| struct device_node * |
| find_devices(const char *name) |
| { |
| struct device_node *head, **prevp, *np; |
| |
| prevp = &head; |
| for (np = allnodes; np != 0; np = np->allnext) { |
| if (np->name != 0 && strcasecmp(np->name, name) == 0) { |
| *prevp = np; |
| prevp = &np->next; |
| } |
| } |
| *prevp = NULL; |
| return head; |
| } |
| EXPORT_SYMBOL(find_devices); |
| |
| /** |
| * Construct and return a list of the device_nodes with a given type. |
| */ |
| struct device_node * |
| find_type_devices(const char *type) |
| { |
| struct device_node *head, **prevp, *np; |
| |
| prevp = &head; |
| for (np = allnodes; np != 0; np = np->allnext) { |
| if (np->type != 0 && strcasecmp(np->type, type) == 0) { |
| *prevp = np; |
| prevp = &np->next; |
| } |
| } |
| *prevp = NULL; |
| return head; |
| } |
| EXPORT_SYMBOL(find_type_devices); |
| |
| /** |
| * Returns all nodes linked together |
| */ |
| struct device_node * |
| find_all_nodes(void) |
| { |
| struct device_node *head, **prevp, *np; |
| |
| prevp = &head; |
| for (np = allnodes; np != 0; np = np->allnext) { |
| *prevp = np; |
| prevp = &np->next; |
| } |
| *prevp = NULL; |
| return head; |
| } |
| EXPORT_SYMBOL(find_all_nodes); |
| |
| /** Checks if the given "compat" string matches one of the strings in |
| * the device's "compatible" property |
| */ |
| int |
| device_is_compatible(struct device_node *device, const char *compat) |
| { |
| const char* cp; |
| int cplen, l; |
| |
| cp = (char *) get_property(device, "compatible", &cplen); |
| if (cp == NULL) |
| return 0; |
| while (cplen > 0) { |
| if (strncasecmp(cp, compat, strlen(compat)) == 0) |
| return 1; |
| l = strlen(cp) + 1; |
| cp += l; |
| cplen -= l; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(device_is_compatible); |
| |
| |
| /** |
| * Indicates whether the root node has a given value in its |
| * compatible property. |
| */ |
| int |
| machine_is_compatible(const char *compat) |
| { |
| struct device_node *root; |
| int rc = 0; |
| |
| root = of_find_node_by_path("/"); |
| if (root) { |
| rc = device_is_compatible(root, compat); |
| of_node_put(root); |
| } |
| return rc; |
| } |
| EXPORT_SYMBOL(machine_is_compatible); |
| |
| /** |
| * Construct and return a list of the device_nodes with a given type |
| * and compatible property. |
| */ |
| struct device_node * |
| find_compatible_devices(const char *type, const char *compat) |
| { |
| struct device_node *head, **prevp, *np; |
| |
| prevp = &head; |
| for (np = allnodes; np != 0; np = np->allnext) { |
| if (type != NULL |
| && !(np->type != 0 && strcasecmp(np->type, type) == 0)) |
| continue; |
| if (device_is_compatible(np, compat)) { |
| *prevp = np; |
| prevp = &np->next; |
| } |
| } |
| *prevp = NULL; |
| return head; |
| } |
| EXPORT_SYMBOL(find_compatible_devices); |
| |
| /** |
| * Find the device_node with a given full_name. |
| */ |
| struct device_node * |
| find_path_device(const char *path) |
| { |
| struct device_node *np; |
| |
| for (np = allnodes; np != 0; np = np->allnext) |
| if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0) |
| return np; |
| return NULL; |
| } |
| EXPORT_SYMBOL(find_path_device); |
| |
| /******* |
| * |
| * New implementation of the OF "find" APIs, return a refcounted |
| * object, call of_node_put() when done. The device tree and list |
| * are protected by a rw_lock. |
| * |
| * Note that property management will need some locking as well, |
| * this isn't dealt with yet. |
| * |
| *******/ |
| |
| /** |
| * of_find_node_by_name - Find a node by its "name" property |
| * @from: The node to start searching from or NULL, the node |
| * you pass will not be searched, only the next one |
| * will; typically, you pass what the previous call |
| * returned. of_node_put() will be called on it |
| * @name: The name string to match against |
| * |
| * Returns a node pointer with refcount incremented, use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_find_node_by_name(struct device_node *from, |
| const char *name) |
| { |
| struct device_node *np; |
| |
| read_lock(&devtree_lock); |
| np = from ? from->allnext : allnodes; |
| for (; np != 0; np = np->allnext) |
| if (np->name != 0 && strcasecmp(np->name, name) == 0 |
| && of_node_get(np)) |
| break; |
| if (from) |
| of_node_put(from); |
| read_unlock(&devtree_lock); |
| return np; |
| } |
| EXPORT_SYMBOL(of_find_node_by_name); |
| |
| /** |
| * of_find_node_by_type - Find a node by its "device_type" property |
| * @from: The node to start searching from or NULL, the node |
| * you pass will not be searched, only the next one |
| * will; typically, you pass what the previous call |
| * returned. of_node_put() will be called on it |
| * @name: The type string to match against |
| * |
| * Returns a node pointer with refcount incremented, use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_find_node_by_type(struct device_node *from, |
| const char *type) |
| { |
| struct device_node *np; |
| |
| read_lock(&devtree_lock); |
| np = from ? from->allnext : allnodes; |
| for (; np != 0; np = np->allnext) |
| if (np->type != 0 && strcasecmp(np->type, type) == 0 |
| && of_node_get(np)) |
| break; |
| if (from) |
| of_node_put(from); |
| read_unlock(&devtree_lock); |
| return np; |
| } |
| EXPORT_SYMBOL(of_find_node_by_type); |
| |
| /** |
| * of_find_compatible_node - Find a node based on type and one of the |
| * tokens in its "compatible" property |
| * @from: The node to start searching from or NULL, the node |
| * you pass will not be searched, only the next one |
| * will; typically, you pass what the previous call |
| * returned. of_node_put() will be called on it |
| * @type: The type string to match "device_type" or NULL to ignore |
| * @compatible: The string to match to one of the tokens in the device |
| * "compatible" list. |
| * |
| * Returns a node pointer with refcount incremented, use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_find_compatible_node(struct device_node *from, |
| const char *type, const char *compatible) |
| { |
| struct device_node *np; |
| |
| read_lock(&devtree_lock); |
| np = from ? from->allnext : allnodes; |
| for (; np != 0; np = np->allnext) { |
| if (type != NULL |
| && !(np->type != 0 && strcasecmp(np->type, type) == 0)) |
| continue; |
| if (device_is_compatible(np, compatible) && of_node_get(np)) |
| break; |
| } |
| if (from) |
| of_node_put(from); |
| read_unlock(&devtree_lock); |
| return np; |
| } |
| EXPORT_SYMBOL(of_find_compatible_node); |
| |
| /** |
| * of_find_node_by_path - Find a node matching a full OF path |
| * @path: The full path to match |
| * |
| * Returns a node pointer with refcount incremented, use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_find_node_by_path(const char *path) |
| { |
| struct device_node *np = allnodes; |
| |
| read_lock(&devtree_lock); |
| for (; np != 0; np = np->allnext) |
| if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0 |
| && of_node_get(np)) |
| break; |
| read_unlock(&devtree_lock); |
| return np; |
| } |
| EXPORT_SYMBOL(of_find_node_by_path); |
| |
| /** |
| * of_find_node_by_phandle - Find a node given a phandle |
| * @handle: phandle of the node to find |
| * |
| * Returns a node pointer with refcount incremented, use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_find_node_by_phandle(phandle handle) |
| { |
| struct device_node *np; |
| |
| read_lock(&devtree_lock); |
| for (np = allnodes; np != 0; np = np->allnext) |
| if (np->linux_phandle == handle) |
| break; |
| if (np) |
| of_node_get(np); |
| read_unlock(&devtree_lock); |
| return np; |
| } |
| EXPORT_SYMBOL(of_find_node_by_phandle); |
| |
| /** |
| * of_find_all_nodes - Get next node in global list |
| * @prev: Previous node or NULL to start iteration |
| * of_node_put() will be called on it |
| * |
| * Returns a node pointer with refcount incremented, use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_find_all_nodes(struct device_node *prev) |
| { |
| struct device_node *np; |
| |
| read_lock(&devtree_lock); |
| np = prev ? prev->allnext : allnodes; |
| for (; np != 0; np = np->allnext) |
| if (of_node_get(np)) |
| break; |
| if (prev) |
| of_node_put(prev); |
| read_unlock(&devtree_lock); |
| return np; |
| } |
| EXPORT_SYMBOL(of_find_all_nodes); |
| |
| /** |
| * of_get_parent - Get a node's parent if any |
| * @node: Node to get parent |
| * |
| * Returns a node pointer with refcount incremented, use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_get_parent(const struct device_node *node) |
| { |
| struct device_node *np; |
| |
| if (!node) |
| return NULL; |
| |
| read_lock(&devtree_lock); |
| np = of_node_get(node->parent); |
| read_unlock(&devtree_lock); |
| return np; |
| } |
| EXPORT_SYMBOL(of_get_parent); |
| |
| /** |
| * of_get_next_child - Iterate a node childs |
| * @node: parent node |
| * @prev: previous child of the parent node, or NULL to get first |
| * |
| * Returns a node pointer with refcount incremented, use |
| * of_node_put() on it when done. |
| */ |
| struct device_node *of_get_next_child(const struct device_node *node, |
| struct device_node *prev) |
| { |
| struct device_node *next; |
| |
| read_lock(&devtree_lock); |
| next = prev ? prev->sibling : node->child; |
| for (; next != 0; next = next->sibling) |
| if (of_node_get(next)) |
| break; |
| if (prev) |
| of_node_put(prev); |
| read_unlock(&devtree_lock); |
| return next; |
| } |
| EXPORT_SYMBOL(of_get_next_child); |
| |
| /** |
| * of_node_get - Increment refcount of a node |
| * @node: Node to inc refcount, NULL is supported to |
| * simplify writing of callers |
| * |
| * Returns node. |
| */ |
| struct device_node *of_node_get(struct device_node *node) |
| { |
| if (node) |
| kref_get(&node->kref); |
| return node; |
| } |
| EXPORT_SYMBOL(of_node_get); |
| |
| static inline struct device_node * kref_to_device_node(struct kref *kref) |
| { |
| return container_of(kref, struct device_node, kref); |
| } |
| |
| /** |
| * of_node_release - release a dynamically allocated node |
| * @kref: kref element of the node to be released |
| * |
| * In of_node_put() this function is passed to kref_put() |
| * as the destructor. |
| */ |
| static void of_node_release(struct kref *kref) |
| { |
| struct device_node *node = kref_to_device_node(kref); |
| struct property *prop = node->properties; |
| |
| if (!OF_IS_DYNAMIC(node)) |
| return; |
| while (prop) { |
| struct property *next = prop->next; |
| kfree(prop->name); |
| kfree(prop->value); |
| kfree(prop); |
| prop = next; |
| } |
| kfree(node->intrs); |
| kfree(node->addrs); |
| kfree(node->full_name); |
| kfree(node); |
| } |
| |
| /** |
| * of_node_put - Decrement refcount of a node |
| * @node: Node to dec refcount, NULL is supported to |
| * simplify writing of callers |
| * |
| */ |
| void of_node_put(struct device_node *node) |
| { |
| if (node) |
| kref_put(&node->kref, of_node_release); |
| } |
| EXPORT_SYMBOL(of_node_put); |
| |
| /* |
| * Fix up the uninitialized fields in a new device node: |
| * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields |
| * |
| * A lot of boot-time code is duplicated here, because functions such |
| * as finish_node_interrupts, interpret_pci_props, etc. cannot use the |
| * slab allocator. |
| * |
| * This should probably be split up into smaller chunks. |
| */ |
| |
| static int of_finish_dynamic_node(struct device_node *node, |
| unsigned long *unused1, int unused2, |
| int unused3, int unused4) |
| { |
| struct device_node *parent = of_get_parent(node); |
| int err = 0; |
| phandle *ibm_phandle; |
| |
| node->name = get_property(node, "name", NULL); |
| node->type = get_property(node, "device_type", NULL); |
| |
| if (!parent) { |
| err = -ENODEV; |
| goto out; |
| } |
| |
| /* We don't support that function on PowerMac, at least |
| * not yet |
| */ |
| if (systemcfg->platform == PLATFORM_POWERMAC) |
| return -ENODEV; |
| |
| /* fix up new node's linux_phandle field */ |
| if ((ibm_phandle = (unsigned int *)get_property(node, "ibm,phandle", NULL))) |
| node->linux_phandle = *ibm_phandle; |
| |
| out: |
| of_node_put(parent); |
| return err; |
| } |
| |
| /* |
| * Plug a device node into the tree and global list. |
| */ |
| void of_attach_node(struct device_node *np) |
| { |
| write_lock(&devtree_lock); |
| np->sibling = np->parent->child; |
| np->allnext = allnodes; |
| np->parent->child = np; |
| allnodes = np; |
| write_unlock(&devtree_lock); |
| } |
| |
| /* |
| * "Unplug" a node from the device tree. The caller must hold |
| * a reference to the node. The memory associated with the node |
| * is not freed until its refcount goes to zero. |
| */ |
| void of_detach_node(const struct device_node *np) |
| { |
| struct device_node *parent; |
| |
| write_lock(&devtree_lock); |
| |
| parent = np->parent; |
| |
| if (allnodes == np) |
| allnodes = np->allnext; |
| else { |
| struct device_node *prev; |
| for (prev = allnodes; |
| prev->allnext != np; |
| prev = prev->allnext) |
| ; |
| prev->allnext = np->allnext; |
| } |
| |
| if (parent->child == np) |
| parent->child = np->sibling; |
| else { |
| struct device_node *prevsib; |
| for (prevsib = np->parent->child; |
| prevsib->sibling != np; |
| prevsib = prevsib->sibling) |
| ; |
| prevsib->sibling = np->sibling; |
| } |
| |
| write_unlock(&devtree_lock); |
| } |
| |
| static int prom_reconfig_notifier(struct notifier_block *nb, unsigned long action, void *node) |
| { |
| int err; |
| |
| switch (action) { |
| case PSERIES_RECONFIG_ADD: |
| err = finish_node(node, NULL, of_finish_dynamic_node, 0, 0, 0); |
| if (err < 0) { |
| printk(KERN_ERR "finish_node returned %d\n", err); |
| err = NOTIFY_BAD; |
| } |
| break; |
| default: |
| err = NOTIFY_DONE; |
| break; |
| } |
| return err; |
| } |
| |
| static struct notifier_block prom_reconfig_nb = { |
| .notifier_call = prom_reconfig_notifier, |
| .priority = 10, /* This one needs to run first */ |
| }; |
| |
| static int __init prom_reconfig_setup(void) |
| { |
| return pSeries_reconfig_notifier_register(&prom_reconfig_nb); |
| } |
| __initcall(prom_reconfig_setup); |
| |
| /* |
| * Find a property with a given name for a given node |
| * and return the value. |
| */ |
| unsigned char * |
| get_property(struct device_node *np, const char *name, int *lenp) |
| { |
| struct property *pp; |
| |
| for (pp = np->properties; pp != 0; pp = pp->next) |
| if (strcmp(pp->name, name) == 0) { |
| if (lenp != 0) |
| *lenp = pp->length; |
| return pp->value; |
| } |
| return NULL; |
| } |
| EXPORT_SYMBOL(get_property); |
| |
| /* |
| * Add a property to a node |
| */ |
| void |
| prom_add_property(struct device_node* np, struct property* prop) |
| { |
| struct property **next = &np->properties; |
| |
| prop->next = NULL; |
| while (*next) |
| next = &(*next)->next; |
| *next = prop; |
| } |
| |
| #if 0 |
| void |
| print_properties(struct device_node *np) |
| { |
| struct property *pp; |
| char *cp; |
| int i, n; |
| |
| for (pp = np->properties; pp != 0; pp = pp->next) { |
| printk(KERN_INFO "%s", pp->name); |
| for (i = strlen(pp->name); i < 16; ++i) |
| printk(" "); |
| cp = (char *) pp->value; |
| for (i = pp->length; i > 0; --i, ++cp) |
| if ((i > 1 && (*cp < 0x20 || *cp > 0x7e)) |
| || (i == 1 && *cp != 0)) |
| break; |
| if (i == 0 && pp->length > 1) { |
| /* looks like a string */ |
| printk(" %s\n", (char *) pp->value); |
| } else { |
| /* dump it in hex */ |
| n = pp->length; |
| if (n > 64) |
| n = 64; |
| if (pp->length % 4 == 0) { |
| unsigned int *p = (unsigned int *) pp->value; |
| |
| n /= 4; |
| for (i = 0; i < n; ++i) { |
| if (i != 0 && (i % 4) == 0) |
| printk("\n "); |
| printk(" %08x", *p++); |
| } |
| } else { |
| unsigned char *bp = pp->value; |
| |
| for (i = 0; i < n; ++i) { |
| if (i != 0 && (i % 16) == 0) |
| printk("\n "); |
| printk(" %02x", *bp++); |
| } |
| } |
| printk("\n"); |
| if (pp->length > 64) |
| printk(" ... (length = %d)\n", |
| pp->length); |
| } |
| } |
| } |
| #endif |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |